統計,確率のお勉強

統計学を主に勉強しています。勉強したことをアウトプットしていきます。 (※数式はMathJaxにより描画されています。ロードに少し時間がかかることがあります。)

Study Probability & Statistics

確率統計の理論と実践

Daftでグラフィカルモデルを作成してみる[Python]

森北出版の「Pythonで体験するベイズ推論」を読み進めていたら、2章で、Pythonのdaftというライブラリを用いて、グラフィカルモデルを作っていたのですが、そのソースコードは載っていなかったので自分で作ってみました。

作ったのは以下のグラフィカルモデル

f:id:doratai:20170605163828p:plain


参考にしたのは次のサイト。
daftでグラフィカルモデル
このサイトがかなり詳しく説明してくれています。

ソースコード

import daft
from matplotlib import rc
rc("font", family="Ricty", size=15)
rc("text", usetex="True")

pgm = daft.PGM(shape=[6,6])

# Nodes
pgm.add_node(daft.Node("alpha", r"$\alpha$", 4, 5)) # 名前 ラベル 座標
pgm.add_node(daft.Node("tau", r"$\tau$", 1, 4.5))
pgm.add_node(daft.Node("lambda_1", r"$\lambda_1$", 3, 4))
pgm.add_node(daft.Node("lambda_2", r"$\lambda_2$", 5, 4))
pgm.add_node(daft.Node("lambda",  r"$\lambda$", 2, 3))
pgm.add_node(daft.Node("obs", "obs", 2, 2, observed=True))

# Edges
pgm.add_edge("alpha", "lambda_1")
pgm.add_edge("alpha", "lambda_2")
pgm.add_edge("tau", "lambda")
pgm.add_edge("lambda_1", "lambda")
pgm.add_edge("lambda_2", "lambda")
pgm.add_edge("lambda", "obs")

pgm.render()
pgm.figure.savefig("pymc_p43.png")

多項分布

多項分布

基本性質

確率関数
 \displaystyle
f(x_1,\ldots,x_k) = \frac{n!}{x_1!\cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}
期待値
 \displaystyle
E(X_i) = np_i
分散
 \displaystyle
V(X_i) = np_i(1-p_i)
共分散
 \displaystyle
Cov (X_i,X_j) = -np_i p_j

確率関数

1回の試行でk通りの可能な結果A_1,\ldots,A_kのいずれか1つのみが生じ、P(A_i) = p_i(i = 1,\ldots,k)とする。この試行を独立にn回繰り返したときに、A_iが生じる回数をX_iとするとき、X_1,\ldots,X_kの同時分布を多項分布といい、その確率関数は以下で与えられる。
$$
f(x_1,\ldots,x_k) = \frac{n!}{x_1!\cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}
$$

期待値

\begin{eqnarray}
E[X_i] &=& \sum_{i=1}^k x_i \frac{n!}{x_1!\cdots x_k!} p_1^{x_1} \cdots p_k^{x_k} \\
&=& \sum_{i=1}^k \frac{n \cdot (n-1)!}{x_1!\cdots (x_i - 1)! \cdots x_k!}p_i \cdot p_1^{x_1} \cdots p_i^{x_i-1}\cdots p_k^{x_k} \\
&=& np_i \sum_{i=1}^k \frac{(n-1)!}{x_1!\cdots (x_i - 1)! \cdots x_k!} p_1^{x_1} \cdots p_i^{x_i-1}\cdots p_k^{x_k} \\
&=& np_i
\end{eqnarray}

分散

分散を求めるためにまず次の期待値を計算する。
\begin{eqnarray}
E[X_i(X_i - 1)] &=& \sum_{i=1}^k x_i(x_i - 1) \frac{n!}{x_1!\cdots x_k!} p_1^{x_1} \cdots p_k^{x_k} \\
&=& \sum_{i=1}^k \frac{n(n-1) \cdot (n-2)!}{x_1! \cdots (x_i-2)! \cdots x_k!} p_i^2 \cdot p_1^{x_1} \cdots p_i^{x_i-2} \cdots p_k^{x_k} \\
&=& n(n-1)p_i^2 \sum_{i=1}^k \frac{(n-2)!}{x_1! \cdots (x_i-2)! \cdots x_k!} p_i^2 \cdot p_1^{x_1} \cdots p_i^{x_i-2} \cdots p_k^{x_k} \\
&=& n(n-1)p_i^2
\end{eqnarray}
これと、V(X) = E(X(X-1)) + E(X) - E(X)^2であることを用いて分散を求める。
\begin{eqnarray}
V[X_i] &=& E[X_i(X_i-1)] + E[X_i] - E[X_i]^2 \\
&=& n(n-1)p_i^2 + np_i - n^2p_i^2 \\
&=& np_i(1-p_i)
\end{eqnarray}

共分散

期待値、分散のときと同様に計算することで、E(X_i X_j) = n(n-1)p_ip_jが得られるので、

 \displaystyle
\begin{eqnarray}
Cov(X_i, X_j) &=& E(X_i X_j) - E(X_i)E(X_j) \\
&=& n(n-1)p_i p_j - np_i \cdot np_j \\
&=& -np_i p_j
\end{eqnarray}

多項分布の例

サイコロをn回振ったときに、1の目がでる回数をX_1回。2の目がでる回数をX_2回。・・・6の目がでる回数をX_6回とする。また、それぞれの出る確率をp_i(i = 1,2,\ldots,6)とする。この時、確率ベクトル\boldsymbol{X} = (X_1,\ldots, X_6)'は、多項分布\mathrm{Multi}(n,\{p_i\})に従う。


参考文献

岩沢宏和(2012):『リスクを知るための確率・統計入門』,東京図書

「分かりやすい説明」という聞き手(読み手)の怠慢

「説明力」を求められる理系

最近、世の中から、特に理系に求められる能力として説明力がある。Wikipediaのような集合知、そこそこ専門的な知識でもググれば、その内容(理解できるかは別として)をすぐにでも確認することのできる時代に、専門用語をならべて偉そうに話す専門家の存在意義は薄れてきている(専門家が不要な訳ではない)。私自身、このことに対して、強く賛同している。分かりやすく説明できるということは、その分野に対して深い理解を持っていることの証明でもあるし、そのような説明ができる人間になりたいと考えてる。

 

氾濫する超入門書、内容の薄い○○でも分かる△△学

分かりやすさを求めるのは最早、世の中の大きな流れとなっていることが、書店に並ぶ本を見れば分かる。大きな書店に行けば、理工書がコーナーとしてあると思うが、そこに並ぶ本の中に少なからず、超入門系の本が置かれている。○○超入門!とか、文系でも分かる○○学!などといった本たちだ。目を引きやすい、いかにも優しそうなイメージの表紙に、「もう挫折しない!」みたいな帯がまかれていたりする。これらの本が一定数限りのあるならんでいるということは当然それなりに需要があるからならんでいるのだ。つまり、世の中がそのような本を求めているから、数少ない書店のスペースに、内容の薄さに対して、無駄に厚い超入門書が置かれるのである。

 

これらの本が、本当にわかりやすければいいのだ。数式を用いず、統計学ならば、各手法について、どうしてその手法なのか、どうやって使うのか、その結果は何を意味するのかを懇切丁寧に書いてくれるような書籍が本当の「分かりやすい」本なのではないかと思う。しかし、実際はどうだろう。特に私がよく見るのは統計関連のものだが、この手の本はだいたい、Excelの使い方を指南して終わる。なんか「回帰分析で予想!」みたいなことが書いてあって、Excelで一生懸命回帰分析の結果がでるまでの様子を、写真付き(これが、内容は薄く、本は厚くなる理由である)で説明するのだ。このことにどれほどの価値があるというのだろうか。正直、グーグルで検索したほうがよっぽどいい解説が出てくるだろう。そのレベルの無価値な本に、1600円、2000円なんて、どうして払えるだろうか?それ以上に、限りある書店スペースをそれらの本が占有していることが腹正しい限りだ。

「今」の入門書と「昔」の入門書の違い

分かりやすさが叫ばれるようになり、入門書のイメージも変わってきている。昔の入門書というのは「事前知識なくとも、読み進めることができる」というのが、「入門」の意味であった。例えば、多変量解析の入門書を読み進めるにあたって、行列の知識がかなり必要になってくる。昔の入門書というのは、このような必要な知識を付録として巻末に書いておいてくれる。また、当然、確率分布の定義から始まり、確率密度関数、期待値、分散共分散行列と、一つ一つ必要な知識を厳密に書かれているものであった。その分野の基本を詰めたようなものが入門書の意味するところであったのだ。それに対して、現在の入門書というのは、全く知識がない人に「なんとなくわかった気にさせる」ことが(超)入門書の意味するところになっている気がする。こういうものがあって、これはこう使います!といった、中身をそぎ落としすぎて、用語とExcelの使い方を説明する、「知ったか」を育成することを目的としているんじゃないかと疑いたくなるようなものだ。そもそも、学問というものはそれぞれの分野に一生をかける研究者がいる以上、本一冊読んだ程度で理解できるわけがない。

 

分かりやすさを求めた結果なくなるもの

分かりやすい説明をするためにはそのトレードオフとして「厳密性」が失われる。このことは多くの場合において重要ではないと考えられるが、それが失われることにより、多くの勘違いを生む結果となる。学問における定理、公式には、それが成り立つための「前提条件」というものが往々にして存在する。当然、説明する側はそのことは十分に理解しているだろうし、当然説明するときも、どこかしらで、その前提に触れていることだろう。しかし、聞き手側はどうだろうか。世の中の多くは、理系的な考え方に触れていない人が多く、そのような簡易な説明を求める層の多くはそのような人たちに占められると考えられる。そうなったときに、でかでかとプレゼンテーションで定理の内容が書かれていたのを見た聞き手が前提条件など覚えているだろうか。多くは覚えてなどいないだろう。関心があるのは、その結果にあるのだから。そうなってくると、当然前提条件が無視された定理の乱用が始まる。無価値な分析が世の中にはびこるようになる。統計等はその手法(Excelでなんかすれば結果出てくるし)よりも解釈のほうが難しい。そして、"Excelで分析した感を出した何か"を一生懸命発表するのだ。その結果が本当に正しいか、解釈があっているのかは二の次である。

 

何事も理解するためにはそれなりの努力が必要

分かりやすい説明を求めることは悪いことではない。ビジネスマンは研究者ではないので、少ない時間で概要をつかむ必要があるだろうし、研究者はそれにこたえられるほうがいいに決まっている。学生は、小難しい説明を永遠とされたらその授業に出る気など起きないし、勉強する意欲を失ってしまうだろう。

 

しかし、何を理解するにも、まっさらな状態で、なんとなく聞いていたのでは、いくらわかりやすい説明でも、理解できるわけがないのだ。その説明している人は数年から数十年をその分野にかけている人だろう。その内容の一部を短時間で、興味を持ってもらえるよう、もしくは、あなたが求めている部分だけに絞って説明してくれているのかもしれない。その努力に敬意を払い、自分なりに、理解する努力する必要がある。教えてもらうといった受け身思考ではよくない。学ぶんだという積極性が、たとえ、ガンガン質問にいくといった積極性までは持てなくとも、心持ちだけは積極でなくてはならない。そうでないと「分かりやすい」を追い求めた結果「内容の薄い」本や説明しか残らなくなるだろう(さすがにそんなことはないと思うが)し、そのような説明を聞いたり、その程度の本を読んだところで何も得るものなどない。そうならないためには、聞き手、読み手側にもそれなりの準備、努力が必要だと考える。

 

 

50年くらい前の本と現在本屋にならんでいる本を比べて、最近理論部分をしっかり扱う本が少ない(無いわけではない)気がして、ちょっとした愚痴でした。なんかすいません。

ベータ関数,ベータ分布

ベータ関数

定義

p,qが正の定数のとき、下記右辺の定積分を、p,qの関数と考え、ベータ関数と呼ぶ。

$$
B(p, q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx \;\;\; (p,q > 0)
$$

ベータ関数とガンマ関数の関係

ベータ関数と、ガンマ関数の間には次の関係がある。
$$
B(p,q) = \frac{\Gamma (p) \Gamma (q)}{\Gamma (p + q)}
$$

ベータ分布

ベータ分布区間(0,1)上の確率分布であり、以下の確率密度関数によって定義される。

$$
f(x) = \left\{
\begin{array}{cc}
\frac{1}{B(p, q)} x^{p-1} (1-x)^{q-1} & (0 < x < 1) \\
0 & その他
\end{array}
\right.
$$
ベータ分布はBe(p, q)で表す。

以下X \sim Be(p,q)とする。

ベータ分布の平均,分散

\begin{eqnarray}
E[X] &=& \frac{p}{p + q} \\
V[X] &=& \frac{pq}{(p+q)^2 (p+q+1)}
\end{eqnarray}

導出

まずは平均について
\begin{eqnarray}
E[X] &=& \int_0^1 x \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1} dx \\
&=& \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_0^1 x^p (1-x)^{q-1} dx \\
&=& \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \frac{\Gamma(p+1)\Gamma(q)}{\Gamma(p+q+1)} \\
&=& \frac{\Gamma(p+q)}{\Gamma(p+q+1)} \frac{\Gamma(p+1)}{\Gamma(p)} \\
&=& \frac{p}{p+q}
\end{eqnarray}
分散を求めるに当たって、次のモーメントを求める。
\begin{eqnarray}
E[X(X-1)] &=& \int_0^1 x(x-1)\frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1} dx \\
&=& -\frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \int_0^1 x^p (1-x)^q dx \\
&=& -\frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \frac{\Gamma(p+1)\Gamma(q+1)}{\Gamma(p+q+2)} \\
&=& -\frac{pq}{(p+q+1)(p+q)}
\end{eqnarray}
これより、V(X) = E(X(X-1)) + E(X) - E(X^2)から、分散は
\begin{eqnarray}
V[X] &=& E[X(X-1)] + E[X] - E[X]^2 \\
&=& -\frac{pq}{(p+q+1)(p+q)} + \frac{p}{p+q} - (\frac{p}{p+q})^2 \\
&=& \frac{pq}{(p+q)^2(p+q+1)}
\end{eqnarray}

モーメント

ベータ関数のk次モーメントを求める。
\begin{eqnarray}
E[X^k] &=& \int_0^1 x^k \frac{1}{B(p,q)}x^{p-1}(1-x)^{q-1} dx \\
&=& \frac{1}{B(p,q)} \int_0^1 x^{p+q-1}(1-x)^{q-1} dx \\
&=& \frac{B(p+k, q)}{B(p,q)} \\
&=& \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \frac{\Gamma(p+k)\Gamma(q)}{\Gamma(p+q+k)} \\
&=& \frac{\Gamma(p+q)\Gamma(p+k)}{\Gamma(p)\Gamma(p+q+k)}
\end{eqnarray}

p,qが正の整数のときは

 \displaystyle
E [X^k] = \frac{(p+q-1)! (p+k-1)!}{(p-1)!(p+q+k-1)!}
と書くことができる。

ベータ分布の密度関数のグラフ

ベータ分布のグラフは、パラメータごとに以下のようになる。
f:id:doratai:20170528192802p:plain
pythonで描画。以下のサイトをおおいに参考にした。
【Python】scipyとmatplotlibでベータ関数を描画 - 歩いたら休め
ソースコードは以下。

import numpy as np
import scipy.stats
from matplotlib import pyplot as plt

x = np.linspace(0, 1, 1000)
plt.xlim(0,1)
plt.ylim(0,5)
plt.xlabel(r"$x$", fontsize=20, fontname='serif')
plt.ylabel(r"$f(x; p,q)$", fontsize=20,fontname='serif')
plt.title("PDF of Beta Distribution")
params = [[3,9],[6,6],[9,3],[1,1],[1,5],[5,1],[16,16]]
for param in params:
    rv = scipy.stats.beta(param[0], param[1])
    y = rv.pdf(x)
    plt.plot(x,y,'-',lw=2,label=param)
    plt.legend(bbox_to_anchor=(1.05,1), loc='best', borderaxespad=0) #凡例を枠外表示
plt.show()
ベータ関数の特徴

ベータ関数の特徴として、上記のグラフを見ればわかると思うが、パラメータp,qの値によっていろいろな形を取る、ということがある。例えば(p,q) = (1,1)のときは一様分布になっていることがグラフからもわかる。

ベータ分布とベイズ

ベータ分布がよく出てくるのは、ベイズ統計の分野である。ベイズ統計では、事前分布と、事後分布というものを考えるが、その時の事前分布としてベータ分布はよく使われる。グラフでも示した通り、ベータ分布のグラフはパラメータによって非常に柔軟に形を変えることができる。また、グラフとパラメータの対応関係をよく見て欲しい。(p,q) = (3,9)の時、グラフは左に偏り、(p,q) = (9,3)の時、グラフは右に偏っている。つまり、p,qの比がそのままグラフに表現されるのである。このことは、確率的主観を表現する際に都合が良い。予想が6-4であるとして、期待値を0.6とするならば、「私の確信」をp:q = 6:4のベータ分布で表現できるのである。ベイズ主義は確率を「ある事象をどれくらいできるか」の指標と解釈しているため、主観的な確率というものが非常に重要になってくる。その主観的確率を表現する際にベータ分布は非常に都合の良い分布なのだ。

参考文献

松原望,縄田和満,中井検裕(1991):『統計学入門(基礎統計学I)』,東京大学出版会
日本統計学会(2013):『日本統計学会公式認定 統計検定1級対応 統計学』,東京図書

一般逆行列の定義と存在

大学教養レベルで扱う線形代数では、逆行列は「正則行列(非特異行列)」である必要があり、\mathrm{rank}がフルランクであることが逆行列を持つ必要十分条件であった。しかし、行列が特異(逆行列を持たない、フルランクでない)である場合でも、逆行列を持つように、逆行列を拡張した、一般逆行列というものが存在する。統計学の中でも多変量解析などの分野では行列を多用するため、行列の話題というのは非常関心の高いものになる。そのような分野における、一般逆行列の利用は今や日常茶飯事らしいので、定義くらいは知っておきたい。

定義

m \times n行列\boldsymbol{A}の一般逆行列(generalized inverse)とは
$$
\boldsymbol{AGA} = \boldsymbol{A}
$$
を満たす、任意のn \times m行列\boldsymbol{G}のことである。
※一般逆行列の他に擬似逆行列、条件付き逆行列という用語で呼ばれることも多い
実際、\boldsymbol{A}が非特異である場合は\boldsymbol{G} = \boldsymbol{A}^{-1}であるので、\boldsymbol{AGA} = \boldsymbol{AA}^{-1}\boldsymbol{A} = \boldsymbol{A}となっている。

一般逆行列の存在

次に気になるのが、この「一般逆行列」が存在するのかどうかである。結論としては

あらゆる行列は少なくとも1つの一般逆行列を持つ。

これは次の定理で証明される。

定理

\boldsymbol{B}を最大列階数のm \times r行列。\boldsymbol{T}を最大行階数のr \times n行列とする。この時、\boldsymbol{B}は左逆行列\boldsymbol{L}を持ち、\boldsymbol{T}は右逆行列\boldsymbol{R}を持つ。そして、\boldsymbol{RL}\boldsymbol{BT}の一般逆行列である。

証明

\boldsymbol{B}が左逆行列\boldsymbol{L}を持ち、\boldsymbol{T}が右逆行列\boldsymbol{R}を持つことは既知としよう。この時、一般逆行列の定義から
$$
\boldsymbol{BT}(\boldsymbol{RL})\boldsymbol{BT} = \boldsymbol{B}(\boldsymbol{TR})(\boldsymbol{LB})\boldsymbol{T} = \boldsymbol{BT}
$$
である。すなわち、\boldsymbol{RL}\boldsymbol{BT}の一般逆行列である。
今、任意のm \times n行列\boldsymbol{A}を考える。\boldsymbol{A} = \boldsymbol{0}であるならば、明らかに任意のn \times m行列は\boldsymbol{A}の一般逆行列である。\boldsymbol{A} \neq \boldsymbol{0}であるならば、\boldsymbol{A} = \boldsymbol{BT}を満たす最大列階数の行列\boldsymbol{B}と最大列階数の行列\boldsymbol{T}が存在する。したがって、「あらゆる行列は少なくとも1つの一般逆行列を持つ」という結論を得る。


この証明で既知として用いている部分に関しては参考文献を参照ください。

参考文献

David A. Harville,(監訳)伊里正夫(2012) : 『統計のための行列代数(上)』,丸善出版