読者です 読者をやめる 読者になる 読者になる

統計,確率のお勉強

統計学を主に勉強しています。勉強したことをアウトプットしていきます。 (※数式はMathJaxにより描画されています。ロードに少し時間がかかることがあります。)

Study Probability & Statistics

確率統計とアクチュアリーサイエンス

ベクトル微分

統計 微分


多変量解析を勉強するにあたって、必要になることがあるのがベクトルの微分である。

まずはまとめから


$$
\begin{eqnarray}
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\boldsymbol{\beta}} &=& \boldsymbol{C} \tag{1} \\
\frac{\partial(\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta})}{\partial\boldsymbol{\beta}} &=& (A + A^{\mathrm{T}})\boldsymbol{\beta} \tag{2}
\end{eqnarray}
$$

これらを証明していく。ベクトルの微分を考えていくうえでは、面倒だが、成分を
考えていくことになる。

(1)の証明

$$
\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta} = c_1\beta_1 + c_2\beta_2 + \cdots + c_p\beta_p
$$

より

$$
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\beta_i} = c_i
$$

ただし i = 1,2,\cdots,p

よって

$$
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\boldsymbol{\beta}} = \left(
\begin{array}{c}
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\beta_1} \\
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\beta_2} \\
\vdots \\
\frac{\partial(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{\beta})}{\partial\beta_p}
\end{array}
\right)
= \left(
\begin{array}{c}
c_1 \\
c_2 \\
\vdots \\
c_p
\end{array}
\right)
=\boldsymbol{C}
$$

(2)の証明

$$
\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta} = \sum_{i=1}^p\sum_{j=1}^p a_{ij}\beta_i\beta_j
$$

より

$$
\begin{eqnarray}
\frac{\partial(\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta})}{\partial\beta_k} &=& \sum_{j=1}^p a_{kj}\beta_j + \sum_{i=1}^p a_{ik}\beta_i \\
&=& (a_{k1},\cdots,a_{kp})\boldsymbol{\beta} + (a_{1k},\cdots,a_{pk})\boldsymbol{\beta} \\
&=& \{(a_{k1},\cdots,a_{kp}) + (a_{1k},\cdots,a_{pk})\}\boldsymbol{\beta} \\
&=& (\boldsymbol{a}_k + \boldsymbol{a}_k^{\mathrm{T}})\boldsymbol{\beta}
\end{eqnarray}
$$

ここで

$$
A = \left(
\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1p} \\
a_{21} & a_{22} & \ldots & a_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{p1} & a_{p2} & \ldots & a_{pp}
\end{array}
\right)
\\
A^{\mathrm{T}} = \left(
\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{p1} \\
a_{12} & a_{22} & \ldots & a_{p2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1p} & a_{2p} & \ldots & a_{pp}
\end{array}
\right)
$$

であるから、

$$
\frac{\partial\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta}}{\partial\boldsymbol{\beta}}
= \left(
\begin{array}{c}
\frac{\partial(\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta})}{\partial\beta_1} \\
\frac{\partial(\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta})}{\partial\beta_2} \\
\vdots \\
\frac{\partial(\boldsymbol{\beta}^{\mathrm{T}}A\boldsymbol{\beta})}{\partial\beta_p}
\end{array}
\right)
= (A + A^{\mathrm{T}})\boldsymbol{\beta}
$$

となる。

参考文献

特に無し

広告を非表示にする